Protein-based asymmetry and protein-protein interactions in FLP recombinase-mediated site-specific recombination.

نویسندگان

  • X H Qian
  • R B Inman
  • M M Cox
چکیده

When the FLP recombination target (FRT) is cut in half so that only one FLP protein-binding site is present, FLP protein forms a complex in which two such sites are linked head to head. Although held together exclusively by noncovalent interactions, this complex survives electrophoresis in an agarose gel and exhibits a half-life that can be measured in hours. Characterization of this complex indicates that a very stable, asymmetric dimeric complex of FLP protein monomers bound to the FRT is a likely early intermediate in FLP-mediated site-specific recombination. The apparent asymmetry is a property of the protein components of the complex. Even though the DNA components form a perfect palindrome, only one of the two possible DNA cleavage steps takes place in the course of complex formation. Formation of this complex does not occur with half-FRT site DNA substrates that preclude head to head monomer contact or when a FLP mutant protein is used that binds the FRT site but cannot cleave it. Trimeric and tetrameric complexes are also observed, the latter at very low frequency. These results are discussed in terms of an expanded model for early events in FLP-mediated site-specific recombination.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A protein dissociation step limits turnover in FLP recombinase-mediated site-specific recombination.

When two ongoing FLP-mediated recombination reactions are mixed, formation of cross-products is subject to a lag of several minutes, and the subsequent rate of cross-product formation is greatly reduced relative to normal reaction progress curves. The lag reflects the formation of a stable complex containing multiple FLP monomers and two FLP recombination target-containing DNA recombination pro...

متن کامل

Use of green fluorescent protein/Flp recombinase fusion protein and flow cytometric sorting to enrich for cells undergoing Flp-mediated recombination.

Flp recombinase has been used extensively for in vivo manipulation of eukaryotic DNA at specific sequences designated as FRT sites. We developed a method to use Flp-mediated recombination without the need for drug resistance or metabolic selection of cells in which recombination has occurred. We generated expression plasmids directing expression of fusion proteins consisting of Flp recombinase ...

متن کامل

Purification of the FLP site-specific recombinase by affinity chromatography and re-examination of basic properties of the system.

The FLP protein, a site-specific recombinase encoded by the 2 micron plasmid of yeast, has been purified to near homogeneity from extracts of E. coli cells in which the protein has been expressed. The purification is a three column procedure, the final step employing affinity chromatography. The affinity ligand consists of a DNA polymer with multiple FLP protein binding sites arranged in tandem...

متن کامل

Holliday junctions in FLP recombination: resolution by step-arrest mutants of FLP protein.

The FLP "recombinase" of the 2-micron circle yeast plasmid can resolve synthetic FLP site-Holliday junctions. Mutants of the FLP protein that are blocked in recombination but are normal in substrate cleavage can also mediate resolution. The products of resolution by these mutants are almost exclusively nicked molecules with a protein-bound 3' end. There is no significant asymmetry in strand cle...

متن کامل

Utilization of Site-Specific Recombination in Biopharmaceutical Production

Mammalian expression systems, due to their capacity in post-translational modification, are preferred systems for biopharmaceutical protein production. Several recombinant protein systems have been introduced to the market, most of which are under clinical development. In spite of significant improvements such as cell line engineering, introducing novel expression methods, gene silencing and pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 265 35  شماره 

صفحات  -

تاریخ انتشار 1990